在本文中,我们提出了Satformer,这是一种基于新颖的变压器解决方案,可用于布尔(SAT)解决方案。与现有的基于学习的SAT求解器不同,在问题实例级别上学习的satformer学习了难以满足的问题实例的最低限度不满意的内核(MUC),这些实例为这些问题的因果关系提供了丰富的信息。具体而言,我们应用图形神经网络(GNN)以在连接正常格式(CNF)中获得条款的嵌入。层次变压器体系结构应用于子句嵌入以捕获条款之间的关系,并且当组成UNSAT核心的条款在一起时,自我发项权的权重被学到了很高,并将其设置为低。通过这样做,Satformer有效地了解了SAT预测条款之间的相关性。实验结果表明,Satformer比现有的基于端到端学习的SAT求解器更强大。
translated by 谷歌翻译
测试点插入(TPI)是一种可增强可测试性的技术,特别是对于逻辑内置的自我测试(LBIST),由于其相对较低的故障覆盖率。在本文中,我们提出了一种基于DeepTPI的Deep Greatherions学习(DRL)的新型TPI方法。与以前基于学习的解决方案将TPI任务作为监督学习问题不同,我们训练了一种新颖的DRL代理,即实例化为图神经网络(GNN)和深Q学习网络(DQN)的组合,以最大程度地提高测试覆盖范围改进。具体而言,我们将电路模型为有向图并设计基于图的值网络,以估计插入不同测试点的动作值。 DRL代理的策略定义为选择具有最大值的操作。此外,我们将预先训练模型的一般节点嵌入到增强节点特征,并为值网络提出专用的可验证性注意力机制。与商业DFT工具相比,具有各种尺度的电路的实验结果表明,DEEPTPI显着改善了测试覆盖范围。这项工作的代码可在https://github.com/cure-lab/deeptpi上获得。
translated by 谷歌翻译
在电子设计自动化(EDA)领域的应用深度学习(DL)技术已成为近年来的趋势主题。大多数现有解决方案适用于开发的DL模型来解决特定的EDA问题。在展示有希望的结果的同时,他们需要仔细模型调整每个问题。关于\ Texit的基本问题{“如何获得一般和有效的电路神经表征?”}尚未得到解答。在这项工作中,我们迈出了解决这个问题的第一步。我们提出\ Textit {DeepGate},一种新颖的表示学习解决方案,其有效地将电路的逻辑功能和结构信息嵌入为每个门上的向量。具体而言,我们将电路转换为统一和倒换图格式,以便学习和使用信号概率作为Deplegate中的监控任务。然后,我们介绍一种新的图形神经网络,该网络神经网络在实际电路中使用强烈的电感偏差作为信号概率预测的学习前沿。我们的实验结果表明了深度的功效和泛化能力。
translated by 谷歌翻译
We propose Hierarchical ProtoPNet: an interpretable network that explains its reasoning process by considering the hierarchical relationship between classes. Different from previous methods that explain their reasoning process by dissecting the input image and finding the prototypical parts responsible for the classification, we propose to explain the reasoning process for video action classification by dissecting the input video frames on multiple levels of the class hierarchy. The explanations leverage the hierarchy to deal with uncertainty, akin to human reasoning: When we observe water and human activity, but no definitive action it can be recognized as the water sports parent class. Only after observing a person swimming can we definitively refine it to the swimming action. Experiments on ActivityNet and UCF-101 show performance improvements while providing multi-level explanations.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.
translated by 谷歌翻译
Adversarial training is an effective approach to make deep neural networks robust against adversarial attacks. Recently, different adversarial training defenses are proposed that not only maintain a high clean accuracy but also show significant robustness against popular and well studied adversarial attacks such as PGD. High adversarial robustness can also arise if an attack fails to find adversarial gradient directions, a phenomenon known as `gradient masking'. In this work, we analyse the effect of label smoothing on adversarial training as one of the potential causes of gradient masking. We then develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA). Our attack approach is based on a `match and deceive' loss that finds optimal adversarial directions through guidance from a surrogate model. Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size. Furthermore, our proposed G-PGA is generic, thus it can be combined with an ensemble attack strategy as we demonstrate for the case of Auto-Attack, leading to efficiency and convergence speed improvements. More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Automatic medical image classification is a very important field where the use of AI has the potential to have a real social impact. However, there are still many challenges that act as obstacles to making practically effective solutions. One of those is the fact that most of the medical imaging datasets have a class imbalance problem. This leads to the fact that existing AI techniques, particularly neural network-based deep-learning methodologies, often perform poorly in such scenarios. Thus this makes this area an interesting and active research focus for researchers. In this study, we propose a novel loss function to train neural network models to mitigate this critical issue in this important field. Through rigorous experiments on three independently collected datasets of three different medical imaging domains, we empirically show that our proposed loss function consistently performs well with an improvement between 2%-10% macro f1 when compared to the baseline models. We hope that our work will precipitate new research toward a more generalized approach to medical image classification.
translated by 谷歌翻译
People living with dementia often exhibit behavioural and psychological symptoms of dementia that can put their and others' safety at risk. Existing video surveillance systems in long-term care facilities can be used to monitor such behaviours of risk to alert the staff to prevent potential injuries or death in some cases. However, these behaviours of risk events are heterogeneous and infrequent in comparison to normal events. Moreover, analyzing raw videos can also raise privacy concerns. In this paper, we present two novel privacy-protecting video-based anomaly detection approaches to detect behaviours of risks in people with dementia. We either extracted body pose information as skeletons and use semantic segmentation masks to replace multiple humans in the scene with their semantic boundaries. Our work differs from most existing approaches for video anomaly detection that focus on appearance-based features, which can put the privacy of a person at risk and is also susceptible to pixel-based noise, including illumination and viewing direction. We used anonymized videos of normal activities to train customized spatio-temporal convolutional autoencoders and identify behaviours of risk as anomalies. We show our results on a real-world study conducted in a dementia care unit with patients with dementia, containing approximately 21 hours of normal activities data for training and 9 hours of data containing normal and behaviours of risk events for testing. We compared our approaches with the original RGB videos and obtained an equivalent area under the receiver operating characteristic curve performance of 0.807 for the skeleton-based approach and 0.823 for the segmentation mask-based approach. This is one of the first studies to incorporate privacy for the detection of behaviours of risks in people with dementia.
translated by 谷歌翻译